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ABSTRACT

Two transformations are derived in this paper,
One is a mapping of a unit square onto a surface and
the other is a mapping of a unit eube onto a three-
dimensional region. Two meshing computer programs
are then discussed that use these mappings. The
first is INGLN, which has been used to calculate
three-dimensional meshes for approximately 15 years.
This meshing program uses an index scheme to number
boundaries, surfaces, and regions. With such an
index scheme, 1t 1s possible to control nodal points,
elements, and boundary conditions. The second is
ESCHER, a meshing program now being developed. Two
primary considerations governing development of
[SCHER are that meshes graded using quadrilaterals
are required and that edge-line geometry defined by
Computer-Aided  Design/Computer-Aided Manufacturing
(CAD/CAM) systems will be a major source of geometry
definition. This program separates the processes of
nodal-puoint connectivity generation, computation of
nodal-point mapping space coordinates, and mapping of
nodal points intu model space.

INTROUUCTION

The purpuse of this paper is to discuss mappine
methods used to generate three—dimensional meshes.
Mapping methods hav:: been used by researchers for
more than a decade to generate three-dimensional
meshes _Ql’-_(_.'%l
The fundame, 1al concepts of a meShing computer
program that uses mapping methods are the surface and
three-dinensional region mapping transformations.
These are derived and discussed in the Generators
section as the first author remembers their develop-
ment during the years 1967 through 1972 (see the
Appendix). This 1is accomplished by defining a body
or normal coordinate system, then deriving two- and
three-dimensional coordinate transformations between
the body coourdinate system and the cartesian coordi-
nate system. This establishes a mapping of 4 unit
square onto a surface and a unit cube onto a three-
dimensioncl region,

The INGLN Moshing Computer Program  section
describes  the technigues used to generate three-
dimensional meshes with the INGEN computer program,
INGLN and its predecessor have been generating three-
dimensional meshes for the past 15 years.

Two meshes are shown that are generated with
INGEN and displayed with GRAPE (4 To use any mesh-
ing computer program effectively for generating
three-dimensiondal meshes, a graphicy computer program
is required to display the mesh, The ones used at
the Loy Alamoy Naticnal Laboratory are MOVIL deve -
oped by Henry Christiansen of Brigham Younyg Univer-
Sily and GRAPL doeveloped by Ubruce Brown ot Lawrence
! {vermore National [aboratory (GRAPD iy a modified
version of MOVIL),

DISCLAIMER —_

The ESCHER Meshing Computer Program section
describes the technigues used to generate three-
dimensional meshes with ihe ESCHER ( mputer program.
This is a new computer program unde development at
Los Alamos. This computer program also uses mapping
methods 2nd has its own graphics.

The following terms will be used in this paper.

Grid point - a calculated point <that defines

geometry.

Nodal point - a geometric point that defines an

element in the finite—element method. Nodal

points are defined us‘ng grid points.

Boundary edge - a line that defines the boundary

of a surface. This need not Le a discontinuous

line.

GENERATORS

In this section, body coordinates are defined,
and a transformation is derived for both a surface
and a three-dimensional region,

Consider the two-dimensional region Shown in
Fig. 1. This region can be defined by twu coourdinate
systems. One is the cartesian coordinate system and
the other 1is a nonorthogonal coordinate systen,
called ovody or normal coordinates {,n). The body or
normal coordinates are normalized such that thoy vary
between O and 1. Thus, when ° or , is either 0 or |,
a boundary of the region is designatcd. A coordinate
transformation between these two coordinate systems
x(* ,n) and y(*. ,n) can be defined as folluws.
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e Four boundaries are designated for a region.
Two opposite boundaries must be straight
(Boundaries 3 and 4 in Fig. 1) and tue
remaining two may be curved (Boundaries 1 and
2 in Fig. 1). The curved boundaries are
designated as x(£,0), y(£,0) for Boundary 1
and x(¢,1), y(£,1) for Boundary 2.

e A linear transformation is defined as a
transformation that defines n equal to a con-
stant within the region as a linear combina-
tion of the two curved boundaries. Thus,
constant values of n will evolve from the
shape of one curved boundary to ii.® shape of
the other curved boundary as n vari.s from 0
to 1.

This linear transformetion is

l("-n) = (1 - n) l(rnol‘ *n x(rvl) and
y(.’.n) - (l - "I) .Y(r‘lo) + y(:'ll) . (1)

Adding the z coordinate z(‘,n) makes the transforma-
tion valid for a three-dimensional surface. Thus,

2(yn) = (1 = w) 2(7,0) *n 2(°,1) . (2)

Using this transformation for a surface genera-
tor, a computer progra was developed for generating
three-dimensional meshes &t Thiokol Corporation in
1967 (see the Appendix).

A mesh was calculated for the region shown in
Fig. 1, and this mesh is srown in Fig. 2 (a° = 1/17
and an = 1/10).

In 1969, we wanted to generalize this tranforma-
tion, Thus, the criteria ~e odopted were as fullows.

e Ali four boundaries .an be curved, and all
four boundaries wili be equally represented
in the transformation.

e [f any two opoesite sides are straight, the
transforralinn w11 reduce to the transforma-
tion represented by Egs. (1) ana (2).

e For constant * or constant n, the interior
shapey will be a combination of the bounda-
ries. Tnus, the interior points for * con-
stant will be u combination of the boundaries
x(U,n), y(Uymn), 200,n), and x(i,n), y(l,n),
and 2(l,n). For n constant, the {nterior

Fig., @ A two dimensional mesh of by, |

M0l

points will be a combination of the bounda-
ries x([,0), y(£,0), z(E,0) and x(5,1),
y(&,1), z(%,1). When either ¥ or n is con-
stant, the interior points will evolve from
the shape of one boundary to the shape of the
opposite boundary.
Using the first transformation (Eq. (1)) and
Fig. 3, the transformation can be derived for four
curved boundaries as

x(g.n) » (1 = n) x(,0) + nx(£,1) - (1 -7 ) ax(0,n)
‘.E ‘x(lvn} ’

y{£on) = (1 - n) y(£,0) * n y(7,1) * (1 -7) ay(0,n)

- ayil,n) ,
where
Ax(0,n) = ((1 = n) x(0,0; * n x(G,1)] = x(0,n) .
ay(0in) = y(0,n) = [(1 - n) ¥(0,0) *'n y(0,1)] . (3)
ax(lyn) = x{1,n) - [{1 - n) x(1,0) * n x{1,1)] , and
B.V(l-n) - [(1 - n) y(llo) *n y(lll)] - y(lvn)

Simplifying

x(*yn) = (1 = nd x{(+,0) * nx(*,1) * (1 -7 ) x{u,r,
* rx(lyn) = (1 -7 ) (1 - n) x(0,0)
= (1 = ")n I(U.l) - (1 - '\) l(ll"'l
- 'n l(lll) )

~

_V('.n) - (1 ~n) .V(.O) + ny(.l) * (1 =) Yyt
* 2 p(hyn) - (1 -1 (1 - n) yiug,
-l =-t)iny(0,1) = 2 (1 = n) yii,.,
- " noy(l.l) .

Again, when

2(yn) = (0 = 20 ,0) *n20 1) 2 (L -~ ) ri,
<2 (ln) = {1 =) (L - ) 20,0
- (1 = )e 2(uldy -7 - w2ty {5
- a2l ) o,

these transformation equationy can be applied to a
three-dimensional surface. Notice that these trans-
formation equations satisfy the criteria we adop'od
for a generalized surface transtormathion,

10
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A mesh was calculated for the region in Fig. 3
and this mesh 1s shown in Fig. 4 (aAf = 1/12 and an =
1/14).

Given the grid points on the boundary edges, the
body coordinates (£,n) can be calculated. This is
accomplished by calculating the length of the lines
between gric points and then normalizing with respect
to the total boundary edge length. Thus, £ and n
vary between O and 1 on each boundary edge. This can
be considered a mapping of a unit square onto a two-
limensional surface.

Consider the three-dimensional region shown in
F 1. 5. Again, this region can be defined by both
th. cartesian coordinate system and the body coordi-
nate system (Z,n,y). A linear coordinate transforma-
tion between these two coordinate systems (x(f.,n.v),
y(*yn.y), and 2(%,n,y)) can be defined using the fol-
lowing criteria.

e All 12 boundary edges can be curved and each

is equally represented.

o The three-dimensiona) transformation reduces

to surfacc transformations similar to
Eqs. (4) and (5) when any one of the body
coordinates is either 0 or ].
Trus, a linear transformation that satisfies these
criteria is

l("-l"ll‘) = (1 - "I) (l - Y) ‘(:-IOIO)
*n (l - 7) l(:ulno) + (1 - ﬂ) Y x(rloll)
tonyx(,0,1) 4 (1 - 7) (1 - v) x(0,n,0)
* (- y) x(1,n,0) + (1 - %) vy x{0yn,1)
+ A l(l"hl) + (l - l—) (1 = n) ’-(U-Unv)
* 0 (1 = n) x(1,0,y) *+ (1 - 1) nx(0,],y)
* nx(llll") + c(.iﬂlY ’

where

C(Il’h‘) n -2 (1 - :) (1 = ﬂ) (1 = 7) l(oiolo)
-2 (1 -n) (I ~vy) x(1,0,0)
-2 (1 -7")n(l-y)xf0,1,0)
-2 't (1l -y)x(1,1,0) (6)
-2 (-1 -r)y x(0,0,1)
-2 " (1 - n) vy x(1,0,1)
-2 (1 - ) n+vyx(0,1,1;
-2 7 noyoa(1,1,1)

Fig. 4 A two-dimensional mesh of Tig. §

Fig. 5 Cartesian and bady coordinate systems for a
three-dimensional region

Also, y(,n,y) and 2{,n,y) are similar. Thiy trans-
fomation can be written in terms of surtfacaes as fol-
lows:

l('l"\vY) - 1/2 L(I - n) x(rIUIY) *n l(';lon)
M (1 - -) !(OvnlY) A x“.n.v)
* (1 - 7) l(:l"\lu) Yy x(‘l“!l)J 17
+1/4 C(.v"h") ’

where y(’,.n,y) and 2( ,n,y) are similar.

Figure 6 shows a mesn that was calcalaced fto-
the three-dimensional region shown in ;. L (a
= 1/10, an = 1/10, and ay = 1/10).

This transformation, Eg. ‘/), can be consrdered
as a mapping from a unit cut:z just as the surfac
transformation was ¢ mapping from a unit square,

Fig, & A three dimensional mesh of Fig,



In 1973, W. J. Gordon of General Motors ReseArch
Laboratories informed the first author that these
transformation equations had been derived by
S. A. Coons several years earlier (5).

We rely on user intervention to correct mapping
errors rather than insist on perfect mapping algo-
rithms. Occasionally, the mapping of a part into the
real space will have undesired results. Some grid
points may be generated outside the intended part
baundaries. The user corrects such a problem by
either redefining the region of error by subdividing
the region- into simpler regions or by introducing
auxiliary constraints on the mapping a; suggested by
Gordon and Hall (2). For an example, see Fig. 7.

THE INGEN MESHING COMPUTER PROGRAM

INGEN (6) and its predecessor have been in exis-
tence for years. See the Appendix for a history
of this computer program. In this section, we dis-
cuss the philosophy used to davelop this mesher,
describe the methods used for calculating body coor-
dinates on a unit square and in a unit cube, and
define an index scheme and discuss 1its use. Also,
two mesheS are Sshown.

The philosophy involved in developing a nodal-
point mesh is to distribute the grid points according
to the anticipated variation of the field variables.
Fur large gradients, the grid pnints should be dense,
and for small gradients, the grid points should be
sparse. Therefore, when gene-ating a mesh, t is
necessary to make an estimate of how the field varia-
bles change in the different regions of the prooiem.
The user of the INGEN computer program ectablishes
mesh grading for his gradient estimate hy generating
the boundary edges of the mesh with the gesired spac-
ing of grid points using the boundary-edge genera-
tors, and then by using surface and volume (three-
dimensional region; generators, both of which preserve
thvs spacing. Tne surface-grid-point generator pre-
serves this spdcing by using the grid points as the;
are distributed alony the boundary edges as the
criteria for spacing the surface grid points, Simi-
larly, the volume-grid-point generator calculates the
interior grid points using the surface grid pcint: as
the criteria for spacing the f{nterior grid points,
sing these generated grid points, the desired ncJal
points and elements are then calculated.

The unit syuare concept in the Generators sec-
tion is very useful in determining ' and n for grid
points on the surface. The approach thit was used in
éll was to draw straight lines between opposite

oundaries of the unit square, and the puint of inter-
scclion established a ¢ and n ftor a grid point (see

[ \ Voo . I‘:'

Patupionit Ay
aromi 'Ry H

MAY pregat 1l
MAPPIBgG FuNI NiDNg

'
A DIFRAYIH waAPP NG |, '
fUACYION sRODUCH R
AR WeURRp(Y MISH

'
ADDID tLnwE'RAINY
CURAIL 'y MaAFPINGg

mOw MISH g (OREEOD

N T I VST R
NR PaBy gyuBhivinInD
(nRAIE 18 waPPiun SRR

Fig. / User intervention corrects mapping errors

Fig. 8). This approach requires the limitation of
having the same number of grid points on opposite
boundaries. For details, see (l). Once the surface
body coordinates are defined, the surface grid points
are calculated with transformation Eqs. (4) and (5).
The unit cube concept in the Generators section is
very useful to find coordinates E,n,y for calculating
interior grid points for a three-dimensional region.
The approach that was used 1in 1%3_ was to draw a
straight line between opposite boundaries of the unit
cube and the point that was the minimum distance to
the three lines establishes a E,n,y for a grid point
(see Fig. 9). With the body coordinates defined, the
interior grid points are calculated with Eq. (7).

The index scheme is an integral part of the
INGEN meshing computer program. If 1 Jindex counts
the grid points in the © coordinate direction,
J index counts those in the n coordinate direction,
and k index counts those in the y coordinate direc-
tion. Then when only one of the indexes changes, a
boundary edge is designited. When two of tne inderes
change, a surface is represented, and wkhen all thr:e
indexes change, a three-dimensional region is desig-
nated. This makes it very easy to program problem
constraints or boundary conditions that are needea
along 4 boundary edge, on a surface, or throughout a
three-dimensional region. Also, with this ingex
scheme, it is possible to check to see if tha input
is com lete for the boundary edge generators, surface
generators, and volume generators. Another use of
this index screme is to decide when top form nodal
points from grid points. For example, consider the
three-dimensional paratolic element.

o wWhen all three indexes are odd, tne gi1d

point is a corner nodal point.

e When two indnxes are even and one index s
odd, there is no nodal point at that puint.

e MWhen all three indexes are evea, the grid
point is a center pnint and may or mav not be
a nodal poirt as desired.

o when twp indexes are odd and one even, tne
grid point is a midside nodal point . ‘4 may
be eliminated or centered as desired.

® Depending upon which index (i, j, or x) is
the even index, the midside nodal points may
be eliminateu on a preferential basis.

Two meshes will be shown that have been gener-
ated using tne INGEN meshing computer program and
displayed with the graphics computer program GRAPE.

The first of these meshes is a 30-deg segment of
a prestressed roncrete reactor vessel designed by
General Atomic of La Jolla, California, a few years
ago. This mesh was generated with INGEN and is shown
in Fig. 10. The horizontal anc verlical piping are
of soecial interest in this model, Ihis model was
analyzed for stress distribution using the NONSAP-C
computer program (7).

Another 'wesh generated with INGEN is 1 ‘three-
dimensional mydel of a controlled thermonuclear rea.-
tor experiment, This experiment is beiny studied at
Los Alamos and {is shkcun in Fig. ll1.  This madel was
analyzed for magnetic field distribution using the
NONSAP computer program (8). Of special interest s
the geometric spacing o he nodal points in thys
mesh.

THL ESCHLR MLYHING COMPUTER PROGRAM

In this section, we discuss the use ol bLody
coordinate Lranstormation functions in the mesh gen-
erator [SCHER. The chofce of using a mapping method
to develop LSULHER followed an analysis of our current
and future meshing needs. It i< therefore beneficial
Lo discusy the concepts controlling ths deve lypment
of LSCHLK that led to the choice of a mapping
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Fig. 10 Prestressed cuncrete reactor vessel (30-deg
segment) mesn (INGEN)

meihod. we emphasize our philasophy of edge-surface
Jeosetlry specificatior and its relationship to our
applicatior. we present examples of new mesh grading
methods thal r=i1y .-n Ludy crordinate transformation
functions.

E5SCHEX 15 an nleractive computer program for
generatirg two- ang three-dimensional meshes from
geometry ddta received from CAD/CAM systems, other
geometry inp.,t files, and interactive input. £ltnougn
the 1rte~fa.e system ot111 under deve lopment, it
is our ntent to use the ]nitial uraphics Exchange
Specificatron (IGES) (Y) firle format to transmit many
of the reyuired geomefry data to ESCHER. We have
chosen the IGEL format because we believe that it
will pe supported by most of the CAD/CAM systems that
we will interface to for the next 7 to 10 years.
Specifically, we expect CAD/CAM geomelry to be
expressed as edge lines during this time. A second
design objective for ESCHER is to provide more flexi-
ble mesh grading technigques than those available in
the mesh generators that we now use. This is required
so that we can better distribute grid points according
to anticipated variation of field variables. We

Fig. 11 C-atrolled thermonuclear reactor experiment,
mesh (INGIN)

require that a nonambiguous meshing be established
even for regions in which difierent numbers of ele-
ments are specified along region boundaries. The
anticipation of receiving edge-line geometry specifi-
cation from CAD/CAM systems and the ability to define
flexible grading techniques influenced us in choosing
a mapping method for ESCHER.

The first design criterion that resulted in the
choice of a mapping method for ESCHEM is that geome-
try will be specified as edge 1ines. The edge lines
come from CAD/CAM systems, from geometry input files,
and from interactive input. Mapping methods, which
require edge geometry to Qenerate region geometry,
are the lngical choice for geometry completion under
these conditions. However, there 1is a fundamertal
limitation to geometry specification with edge-
defined geometry. In reality, an edge is the inter-
section of surfaces; a surface is not an intersection
of edges. In practice, this limitation nas not been
severely restrictive. The user defines a part by
specifying the edges surrounding the part and by
specifying the number of elements requirad along each
edge. We believe that automation is required for
this step so that the users' input will be minimized.
For a given topolcgy, t.ere is a prescribed order in
wnich edges must be specified. Figure 12 presents
the patterns that can be used to combine edges into
parts. These patterns are reduced to quad:rildterals
and cuboids before the mapping method 15 used to mesn
the part. The specidl purpose 3-D volumes have no!
yet bee.: developed. ESCHFR creates an iniernal
description of a part by computing vertex points at
the ntersections of the specified edge lines. idges
are then defined to be parametric equations of the
edge lines defined between tne vertex pointe (the
parameter being normalized arc lengtn). The verie:
locations thus become cCorners of a unil square or a
unii cube for the mapping function to be usec for
internal part geometry defin,tion. Th's para=mter.
ization, along with the mapping transformat ons spe, -
fied in the fGenerators section, provides a
description of the edge-defined part.

The second design criterion that resulted in tne
choice of a mapping method for ESCHER s that mo-w
flexible mesh grading technigques thar are nom avall-
aple to us are required, Our implementation of mesn
grading is inspired by (and resembles somewnat) a
technique by Imafuku, Kodera, and Sayawax1 gloi. The
difference from their technique i3y cause y oOur
desire to grade with quadrilaterals. We follow a
three-step procedure 11n generating a graded mesh:
(1) we generate nnde connectivity, (/) we compute
nodal coordinates in the mapping space, and (3) we
map the nodal coordinates intu the model space.

Flexibility of mesh grading within t5(HiR
results from the separation of nodal connectivity
generation into a distinct step. We can eastly
incert new gradiny algorithms based on nodil
connectivity. It is an exercise in nduction ¢ “how
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that any region to be meshed with quadrilaterals must
have an even number of element—edge to region-edge
contacts. MWithin this restriction, there are a great
number of useful mesh grading possibilities. Fig-
ure 13 presents a sample of the mesh grading capa-
bilities that we have developed to date. Three-
dimensional topologies considered so far are replica-
tions of the two-dimensional topologies into the
third dimension. Figure 14 presents a typical graded
mesh for a three-dimensional part. In generating
tnese mesh connectivities, we maintain two topologi-
cal attribytes of the nodal points: corner-node and
edge-node. We must know corner-node positions in
mapping space and we must know to which edge an
edge-node belongs. Additional information 1is not
needed to compute nodal coordinates in the mapping
space.

The second step in generating a mesh on a part
is computing the nodal coordinates in the mapping
space. We do this by relaxing the nodal coordinates
in tne mapping space so that each npaal position i
the average of its neighbor nodal positions. C(on-
straints on tnhis process are that corner-nodes are
not allowed to move and edge-nodes Must remain on the
associated edge.

The thirg step in generating the graded mesh is
to map the nodal coordinates of the part from tne
mapping space into the mode! space. Direct implemen-
tations of the mappings of the Generators section are
used without relyiny on surface yenerators for three-
dimensional mapping.

We rely on interactivity to correct model geom-
etry faults. Baumgart gng has suggested a methond
for creating shapes by using what he calls Euler
obJecls. He bases his constructiun on Euler's rule
specifying tne numper of faces, ed;»s, and vertices
1n a polyhedrun. wWe nave used some of his ideas for
usta management within the progran, but have left the
user as tne final judge of geometri( correctness and
completeness.

tig. 131 Mesh

offer
rapid transition of element density

grading algorithms gradual or

Fig. 14 A three-dimensional mesh using one-direction
ref inement
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APPENDI X
HISTORY OF THE MESHING COMPUTER PROGRAM INGEN

The INGEN computer program had its origin in 1967
at Thiokol Corporation, Wasatch Division, Brigham
City, Utah. D. H. Lee, a scientific programmer, and
W. A. Cook, a mathematician, developed a three-
dimensiona® meshing computer program for generating

finite—element data for stress analysis of Minuteman
rocket motors. This mesk had several limitations,
and in 1970 the Air Force Rocke! Propulsion Labora-
tory, Edwards Air Force Base, California, under Con-
tract F04611-70-C-0068, financed the development of
another meshing computer program. This new computer
program was again developed by Lee and Cook. Later,
E. C. Dickson, also a scientific programmer at
Thiokol Corporation, added several significant
features to this computer program. Ir 1974, Coox
became a staff member at th> Los Alamos National
Laboratory and brought the Thiokol meshing computer
program with him. V. J. Orlicky of the Los Alamos
National Laboratory converted this meshing computer
program to the CDC 7600 computer and named it INGEN.
During tne last eight yemars, several additions have
been made to INGEN by Cook, P. D. Smith, and
L. M. Carruthers. These have been supported by the
US Nuclear Regulatory Commission, Division of Reactor
Safety; Energy Research and Development Administra-
tion, {Contract W-7405-ENG.36); and Department of
Energy, Division of Military Applications. The
developnent dur.ng the last eight yea”s has been a
smail effort, and in 1982, the computer program is
only 4200 lines (including comments).



